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SUMMARY 

This paper presents a numerical method for predicting the motion of a spherical bubble close to a rigid structure. 
The velocity potential in the fluid due to the motin of the bubble is represented by a source and a dipole located at 
the centroid of the bubble. This leads to a coupled system of differential equations for the bubbble radius and the 
location of its centroid. This system of equations can be solved using an appropriate numerical scheme. 
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1. INTRODUCTION 

This paper is concerned with determining the motion of a bubble in a liquid close to a rigid structure 
through the use of an appropriate numerical model. Previous work on this problem has been 
concentrated on two main methods: the boundary integral (or element) method and the point source 
or spherical bubble method. Both these methods have their advantages and disadvantages. 

The boundary integral method has been shown to be a powerful tool for solving exterior boundary 
value problems in unbounded domains (see e.g. References 1 and 2). The method has been successfully 
used to model the motion of axisymmetric bubbles close to horizontal rigid planes and free  surface^.^.^ 
Using such axisymmetric models, it is possible to predict the motion of the bubble after the jet, which 
forms during the bubble collapse, has impacted on the opposite side of the bubble.s However, for a fully 
three-dimensional model it is not clear how to detect the point or time of the jet impact. In addition, the 
simple time-stepping schemes, such as the Euler method, used in order to reduce the computational cost 
appear to be unstable, leading to inaccurate results, although such methods have been used with some 
success in predicting the motion of the bubble during its growth phase and the early stages of its 
c o ~ ~ a p s e . ~ '  

The alternative method of solution, the point source method, is not as detailed as the boundary 
integral method in that it does not provide any information about either the bubble shape or the bubble 
migration. However, it is possible to compute the Kelvin impulse of the bubble, which can be used as an 
indication of the direction of the bubble jet. This method has been used to predict the direction of the 
bubble jet in a number of situations, such as bubbles close to rigid planes, spheres, cylinders and slender 
b o d i e ~ . ~ ~ ' ~ , ' '  This method has the advantage that it is computationally cheap and the time stepping is 
stable. 

This paper extends the point source method by using both a point source and a dipole at the bubble 
centroid to describe the fluid motion. By assuming that the bubble remains spherical, it is possible to 
model the motion of the bubble due to buoyancy and other forces which may be acting on the bubble. 
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Such models could be of use in situations where the shape of the bubble is not of primary interest but the 
effect of the bubble on a near-by structure is. As the bubble oscillates, it will cause high- and low- 
pressure points to occur on the surface of the structure and the location and magnitude of these may 
change as the location of the bubble centroid changes. 

2. MATHEMATICAL MODEL 

2.1. Bubble in an unbounded fluid 

Assume that the fluid is inviscid, incompressible and irrotaional. Then the fluid velocity is given by 
the gradient of a scalar potential which is the solution to Laplace’s equation in the fluid domain. 
Following the analysis of Taylor,I2 assume that the bubble surface remains spherical and that the 
velocity potential due to the bubble can be modelled using a point source and a dipole at the bubble 
centroid pb. That is 

where m and G are the source and dipole strengths respectively and r = p - pb, with r = Irl. The 
motion of the bubble can be described as spherically symmetric expansion and contraction added to the 
rigid body translation of a sphere. The radial motion of the bubble expansion and collapse leads to the 
source strength being given 

m = - R ~ R ,  (2) 

where R is the bubble radius and an overdot denotes differentiation with respect to time. The 
instantaneous rigid body translation of the sphere leads to the components of the dipole strengh as” 

R’ u, R’ uy R3 u, G, = -- Gy= -- G, = -- 
2 ’  2 ’  2 ’  

where u,, u,, and u, are the components of the velocity of the bubble centroid. Thus 

R2R R 3 u . r  
4(P) = -r-7. 

The kinetic energy of the bubble is given 

(3) 

(4) 

where S is the surface of the bubble (with unit normal n) and p is the density of the fluid. The rate of 
change of the kinetic energy is equal to the rate of work being done on the fluid.’’ Thus 

where Pb and pOc are the internal pressure of the bubble and the far-field pressure in the plane z = 0 
respectively. Here g is the acceleration due to gravity, which is assumed to be directed along the negative 
z-axis. Substituting in (4) yields 



MODELLING THE MOTION OF A SPHERICAL BUBBLE 1127 

If the bubble centroid is assumed to be stationary, then the components of the velocity II are all equal to 
zero and (7) becomes the well-known Rayleigh-Plesset equation. 

The Kelvin impulse of the bubble is given by14 

I = p  4ndS I, 
and the rate of change of the Kelvin impulse is equal to the applied forces.I3 That is 

and differentiating (8) yields 

2ZP F = - (3R’Ru + R3U). 
3 

Since only buoyancy forces are acting on the bubble, it follows that the components of F are 
F, = F’ = 0 and F, = 4npgR3/3. Using (10) to eliminate u from (7) yields 

2.2. Bubble in a fluid near a rigid structure 

For a bubble in a fluid near to some form of rigid structure the velocity potential can be expressed as 
the s u m  of the potential due to the bubble, +,,, and the potential due to the structure, (i.e. 
4 = 4,, + c$~) .  In order to derive an equation for the bubble radius, it is assumed that on the surface 
of the bubble can be approximated by the value of +s at the bubble centroid. This approximation is valid 
provided that the bubble is not too close to the structure. At the bubble centroid the potential 4, and its 
space derivatives can be expressed in terms of the source and dipole strengths of the bubble potential in 
the form 

_-  *’ - born + b,  G, + b2Gy + b3Gz, 
(12) 

ax 

i)Z 

4s = aorn + alG, + azGy + a3Gz, 

ws ~ = d o m + d l G x + d 2 G y + d 3 G z ,  - = corn + c,G, + czGy + c3Gr, 
ay 

w 

where the time-dependent parameters a. to d3 are determined from the geometry of the problem under 
consideration. 

For simple geometries it is possible to determine these constants analytically using the method of 
images. For example, when considering a bubble close to a vertical rigid plane, all the parameters are 
zero except for 

1 

1 

b, =- 
8 2  ’ 

1 1 

1 1 
= -G’ a. = - 

c, = -- 
2Yb ’ 

4 =- 
c2 =G* 8 2  ’ 4v’b ’ 

where y = 0 is the equation of the rigid plane and yb is the y-co-ordinate of the bubble centroid. In this 
case the required time derivatives of these parameters can be obtained either analytically or by using a 
finite difference scheme. 
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For a bubble near a finite rigid structure, such as a sphere or a cylinder, the constants can be 
determined using the boundary integral method. Assume that the velocity potential due to the structure 
can be represented as a layer density over the structure surface.15 That is 

Cp,(P> = J G(P9 q)4q) a, = A(P)C, (14) x 
where CT is the source density function. If p E C, then 

On the surface of the structure thcre is the boundary condition 

Thus 

Since 4 b  (and hence a+,/an) is given by (l), then 

which leads to 4s in the form (1 2) with 

ao = -A(+ + B)  - 1  
r '  01 = - A ( - f f + B )  

The space derivatives of 4s, which are needed at the bubble centroid, can be expressed as 

where 

which in turn yields 

It is possible to obtain similar expressions for the other constants co to d3 by introducing the integral 
operators A,, and A, which are defined by replacing the xderivative in (21) by a y- and a zderivative 
respectively. 

For problems involving a bubble near a finite rigid structure, it is not possible in general to find the 
derivative of the constants a. and d3 analytically and so it is necessary to employ a finite difference 
scheme. 
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dependent on the geometry have been found, the kinetic energy can be 

(& + +s)( v#b + Vd)s>ndS* (23)  

By using an approximation of the form (1 2 )  for & and its space derivatives and assuming that the 
bubble is spherical, (23)  yields 

K =pn(2R3k + fR3u ' u - iRSR(b,ux + CoU, +  do^,) 

RS R 
2 - - [ U X ( ~ , ~ X  ciuYdilr,) + Uy(b2Ux C2uY d24) uz(b3ux C3UY + d3uz)1 

x R'?R(aoR + alRu,  + a2Ru, + a3Ru,)). (24)  

Since dKldt equals the rate of work being done, the equation above can be differentiated to give a 
second-order ordinary differential equation for the bubble radius (see Appendix). 

The acceleration of the bubble centroid can be calculated from (1  0) as 

The forces F acting on the bubble are given byI6 

where Z denotes all surfaces bounding the fluid except the surface of the bubble. 

radius (see Appendix), the equation for the velocity of the bubble centroid (25) and 
The system of ordinary differential equations formed by considering the equation for the bubble 

P b  = " (27)  
for the location of the bubble centroid m, can be integrated using an appropriate numerical scheme 
subject to suitable initial conditions. 

Once the potential has been determined, it is possible to calculate the pressure distribution on the 
surface of the structure using Bernoulli's equation:14 

The initial conditions for the system are that the bubble radius, radial velocity and location are 
specified. The initial velocity of the bubble centroid is assumed to be zero. Therefore, since the structure 
is assumed to be stationary, it follows that the time derivatives of the constants a. to d3 are all initially 
zero. 

2.3. Numerical methods 

For a bubble close to an infinite rigid plane the constants a. to d3 can be computed analytically and the 
resulting system of coupled ordinary differential equations can be solved using a fourth-order Runge- 
Kutta scheme." However, for a bubble near a finite rigid structure the constants a0 to d3 need to be 
determined numerically by solving the integral equations appearing in (24) (and the similar integral 
equations which appear in the expressions for the constants b, to d3). In this work all these integral 
equations are solved via the boundary element method using a piecewise constant approximation to the 
s o m e  density. Full details of such boundary element methods for Laplace's (or related) equations can 
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be found in References 1, 18 and 19 for example. The use of the piecewise constant approximation 
avoids the problem of the surface not having well-defined normals at the nodal points, since element 
centroids are taken as the collocaton points. 

It is noted that the approximation to (- I + B)-' only needs to be computed once, since the structure 
is rigid and fixed. However, the approximations to the integral operators A ,  A,, A, and A, need to be 
computed at each step as they depend on the relative locations of the bubble and the structure. 

The potential at the nodal points of the surface of the structure, needed for pressure calculation, can 
be computed from (1) and (17) with p E C. The gradient of the potential on the surface of the structure 
could be computed using (20), but there are numerical problems with doing this due to the singularities 
in the kernel functions of the integral operators A,, A, and A,. Alternatively, the gradient of the potential 
can then be computed using the combined finite difference and least squares scheme introduced by 
Harris.' The time derivative of the potential can be found by differentiating (1) and (1 7) and using finite 
differences where appropriate. 

The timestep can be allowed to vary in length. When the bubble is close to its maximum radius, the 
physical quantities are changing slowly with time so it is possible to take larger time steps, but when the 
bubble is close to its minimum radius, the physical quantities are changing more rapidly with time and it 
is necessary to take smaller time steps. Here the time steps are calculated using 

St = St,R(t). (29) 

where at,, is a specified parameter. This scheme gives larger time steps when the bubble has a larger 
radius and appears to give a stable time-stepping method. 

3. NUMERICAL RESULTS 

The results discussed in this section are for bubbles in a number of typical situations. It should be noted 
that these results were obtained using the non-dimensional form of the governing equations. Here the 
length scale is R,, the maximum radius of the bubble, the time scale is R,J(Ap/p) and the pressure 
scale Ap is chosen such that poo = 1. Full details of the non-dimensional variables can be found in 
Reference 3. 

Figure I shows the bubble radius and horizontal and vertical displacements for a bubble 5 units from 
a vertical rigid wall. The horizontal displacement is towards the rigid wall and the vertical motion is 
upwards owing to the buoyancy of the bubble. Figure 2 shows the corresponding results for a bubble 10 
units from the boundary. These results illustrate that the bubble is attracted towards the rigid boundary 
and that the force of attraction is greater for bubbles which are closer to the vertical wall. However, the 
vertical motion due to buoyancy is almost unaffected by the distance of the bubble from the rigid wall. 
These results also show that the distance from the wall has a small effect on the radius of the bubble. The 
bubble furthest from the wall has a slightly shorter period of oscillation. 

Figures 3 and 4 show the pressure on the surface of a rigid cylinder for the same bubble at different 
times. These results show that there is a high-pressure region on the surface of the cylinder whenever the 
bubble is close to its minimum radius. Further, as the bubble rises owing to buoyancy, the location of the 
high-pressure region moves up the side of the cylinder. These repeated high-pressure pulses generated 
by the oscillating bubble could be a mechanism for damage to an elastic structure. Figure 5 shows the 
location of the bubble centroid to the location of the cylinder. This shows how the bubble migrates 
towards the structure. 

Figure 6 shows that variation in the pressure at a point on a rigid sphere with a bubble immediately 
above and Figure 7 shows the bubble radius. Clearly there are sharp peaks in the pressure whenever the 
bubble reaches its minimum volume, but as the bubble rises away h m  the sphere, the level of the peaks 
is decreasing. 
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Figure 1 Bubble radlus and honzontal and vertical displacements for a bubble 5 unlts from a verncal ngid wall 
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Figure 2 Bubble radlus and honzontal and vertical displacements for a bubble I0 units from a vertical ngid wall 

Figure 3. Pressure distribution on the surface of a cylinder early in the bubble's lifetime 
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Figure 4. Pressure distribution on the surface of a cylinder later in the bubble's lifetime 
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Figure 5.  Change in location of bubble ccntroid 
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Figure 6 .  Pressure on the surface of a sphere at the point closest to the initial bubhle 
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Figure 7. Radius of a bubble above a rigid sphere 

4 .  CONCLUSIONS 

The present model is an effective numerical method for studying the effect of a bubble on a near-by 
structure. The full boundary integral method considered in References 8 and 9 can only effectively 
consider the motion over the first bubble growth and the early stages of the subsequent collapse before 
the time stepping becomes unstable. The point source method can model a number of bubble 
oscillations, but is limited because the location of the bubble centroid does not change. The model 
proposed here can be used to study the effects of the bubble on the structure over a number of bubble 
oscillations. This model has the additional advantage over the full boundary integral method that it is 
relatively cheap in terms of computer CPU time. 
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APPENDIX 

The ordinary differential equation for the bubble radius is 

R[4R3 - fR’(bo~, + COU, + d o ~ , ) / R  + P(a0R + u ~ R u ,  + u ~ R u ,  + a,Ru,)/R + Pao)] 
= 4 R 2 b  - poo + pgzb)/p - 4u2g/3R - 6R2R - 2R3(u,Ux + uyUy + u,u,)/3R 

+ 5@k(boux + CoU, + doU,)/3 + R5(b&, + CoU, -!- dohz + b o U ,  + &U,, + &U2)/3 

+ (R6U,/R + 6 ~ s ~ x ~ ~ b ~ u x + c ~ u y + d ~ u ~ ) / 2 + R 6 u x ( b l U x + c l U y + d l ~ ~  + b,ux + cluy + >,uZ) /2R 

+ (pUy/R + 6 p u y ) ( b 2 ~ ,  + cZ~,d2~,) /2  + PuY(b2Ux + c2iY + d2Uz + &u, + C p Y  + IJZU,) /~R 
+ (R6Uz/R + 6 R 5 ~ , ) ( b 3 ~ ,  + C ~ U ,  + d3u,)/2 + R6~,(63Ux + ~3U,+d3U, + & ~ 3  +C3uY + >3u2)/2R 

- 4R3R(aoR+alRu, + a,Ru, + a3Ru,) - @(a& + alRux + a , h ,  + a, Ru, 

+ a2RUy + a2Ruy + a2Ruy + a,RU, + u3Ruz + a3Ruz). 

It is noted that if the bubble’s initial radial velocity is zero, then there appears to be a problem with 
dividing by R However, the initial conditions require that all the terms divided by R are initially zero. 
Although it is possible to get R = 0 at some subsequent point in the calculation, there is very unlikely 
and can overcome by setting R to be some small but non-zero value. 
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